星海研究院有着全世界最丰富的可控核聚变研究技术,这些问题的解决难度远远没有第一次解决可控核聚变那么高。
事实上,在他前往圣彼得堡参加国际数学家大会的时候,能源研究所那边针对仿星器的等离子体温度提升困难问题已经有了一定程度的突破。
这方面主要得益于国内强悍的ICRF天线加热技术。
简单的来说,就是缺哪补哪儿。
在能源研究所的负责人梁曲得带领下,能源研究所的实验室对ICRF加热天线进行虚拟装配改进,模拟新型ICRF加热天线的整个装配流程,并对其各个部件之间进行干涉检测。
通过对新型ICRF加热天线的结构设计、关键部件的有限元仿真和整体虚拟装配,得到了新型ICRF加热天线的各项设计参数,验证了设计的可靠性和合理性,增强了加热功率。
通过提升ICRF加热技术,来维持住仿星器反应堆腔室中的温度,对于结构复杂,容易损失高能粒子的仿星器腔室来说的确是一个解决办法。
不过这个办法属于头疼医头脚疼医脚。
仿星器腔室内部的等离子体温度提升相对困难的根本原因在于极其复杂的磁铁配置导致了仿星器以热量损失的形式泄漏了大量聚变产生的能量。
业内称之为‘新古典传输’,这才是仿星器腔室内部等离子体温度难以提升的核心。
内容未完,下一页继续阅读