事实上,因为碳具有很强的结合能力,可以与元素形成稳定的键,从而构成有机分子的机理,使用各种碳材料,如石墨烯,碳纳米管等材料来进行各种化合物之间的稳定是很常见的事情。
在锂硫电池中,使用碳材料来稳定硫的性质也一直都是各大实验室和研究机构的主要研究方向之一。
如果是在其他领域,或许其他实验室早就成功了。
但在电池领域,就完全不同了。
众所周知,完整石墨晶格的非极性表面与极性多硫化物的相互作用较弱,会导致臭名昭著的穿梭效应和较差的硫转化动力学。
在锂电池中,这都是无法接受的缺陷,会分别导致电池可能出现高温自燃爆炸和电池容量降低,充放电效率降低等风险。
这两项,可以说是刚好卡在了电池的命门上。
也导致了碳材料,至少石墨材料在锂硫电池中的前景算不上多么的光明。
但是在化学材料计算模型的模拟验算中,石墨材料却是重要的组成部分。
通过超算的助力,化学材料计算模型分析出了稳定‘单斜伽马相硫’的材料。
简单的来说,通过在石墨晶格中设计了五边形缺陷,以打破π-共轭的完整性,使局部电子分布同时增强多硫化物的亲和力并加速硫转化动力学。
内容未完,下一页继续阅读