抛开这点外,还有一个关键点也让他在一定程度上加重了并不是很看好的态度。
所谓的‘改性铅磷灰石晶体结构KL-66’,通过arxiv上面的两篇论文来看,核心技术在于使用CuCu2+取代了Pb22+,诱发了微小的晶体结构畸变,从而让体积收缩0.48%,借此在铅离子和磷酸盐界面上构造出超导量子阱,并让这种KL-66材料具备了超导性。
但以他自己多年研究材料学的经验来看,这种替代应该是没法形成超导性的。
首先是铅和铜原子具有极其相似的电子结构,用铜原子代替部分铅原子不应该对材料的电性能产生较大影响。
其次在于如果他没记错的话,使用铜原子取代铅虽然并不是不可以,但理论上来说,完成这项目标需要的能量在热力学上相当高。
具体多少还需要具体计算,但理论上来说,绝对不是900度的温度烧个十几个小时就能做到的。
要了一份KL-66的数据和计算模型模拟数据,徐川在自己的办公室中展开了演算。
虽然通过单纯的数学计算,并没有办法断定这种KL-66材料并非常温超导体,但通过原子的形成能计算、声子谱、紧束缚模型等方式,还是可以大致的推算出来的。
【E5=Ef-[(No–1)/No]*Ei】
【设置变量Cu等于3.615、单位金属维度3、边界.】
【计算工程所有pe/atom、计算工程所有减少总和g】
内容未完,下一页继续阅读