“毕竟素数是无穷,非平凡零点数也是无穷的。光是这一点,就足够卡住目前压缩临界带的研究思路了。”
“这条路,或许能继续推进下去,甚至将其推进到0.45,0.46甚至更高都有可能,但想要将其稳定压缩到1,我觉得希望不大。”
“至少在目前传统的研究方式上希望不大。”
对于徐川来说,最近这些天的论文并不是白看的。
虽然说有帮助的东西并不算多,但关于压缩临界带,提高临界带上非平凡零点的数量的方法他却了解的相当清楚了。
直觉告诉他,这种方法虽然研究黎曼猜想很有效,但想要靠它解决黎曼猜想,将非平凡零点的实数根推进到1/2,可行度几乎是零。
否则他也不需要再另辟蹊径寻找一种其他的办法了,直接延续前人研究就行。
听着徐川的解释,德利涅皱起了眉头,脸上也带上了一些沉思。
通过压缩临界带,提高临界带上非平凡零点的数量和占比,这一方法是目前数学界研究黎曼猜想的主流方法之一,甚至可以说就是主流方法。
二十一世纪以后,针对黎曼猜想的研究,有超过三分之二是基于这种方法做出来的。
但即便是算上哈佛大学那边还有一些争议的No(T)>0.4N,其实他们距离最终的目标No(T)=N(T)(即所有非平凡零点在临界线上),以及还有很长的一段路要走。
内容未完,下一页继续阅读