而且随着数值计算方法的日益发展,已成为多种数值方法构造中必不可少的组成部分。
但对于三维椭圆电磁场与高维大尺度反散射问题的分析与计算难题来说,由于临界非线性项所导致紧性条件的缺失,很难通过有梯形求积法、辛普生求积法、高斯求积法、椭圆积分法来解决这个问题。
但对于徐川来说,要创造性的为临界非线性项所导致紧性条件的缺失完成一项新的方法并不是什么太难的工作。
唯一需要考虑的,那就是将计算机软件技术与各向异性的电磁场数值计算相结合,利用计算机的计算速度快、精确度高的特点来提高各向异性的电磁场数值计算的速度和精度。
通过场源离散化的直接积分法来实现矩形长直载流导线的数值计算,并对这几种数值计算方法进行比较。
再根据长直载流导线磁场解析解和数值解计算程序的运行结果可见,数值解与解析解十分接近,能满足电磁场工程的一般要求。
这样虽然并不一定能够完全解决掉这个问题,但至少,他可以解决掉这个问题的一部分!
想到这里,徐川将已经写满的草稿纸推开到一边,重新在一张洁白的纸上写下了一行算式。
【×E^sikH^s=0,×H^s+ikE^s=0】
看着稿纸上的数学公式,徐川的嘴角渐渐勾起了一丝笑容。
内容未完,下一页继续阅读